Гдз по биологии 10 класс сивоглазов агафонова: Химический состав клетки. Биоэлементы

Химический состав клетки. Биоэлементы



Вспомните!

1. Что такое химический элемент?

Определенный вид атома

2. Какие химические элементы преобладают в земной коре?

Наибольшее распространение в земной коре имеют 46 элементов, из них 8 составляют 97,2—98,8% ее массы, 2 (кислород й кремний) — 75% от общей массы Земли.

Распределение химических элементов в процентах от массы земном коры (по А. Е. Ферсману) следующее в %:

Кислород 49,13

Кремний 26,00

Алюминий 7,45

Железо 4,20

Кальций 3,25

Натрий 2,40

Первые 13 элементов (за исключением титана), наиболее часто встречающиеся в земной коре, входят в состав органического вещества растений, участвуют во всех жизненно необходимых процессах и играют важную роль в плодородии почв.

Большое количество элементов, участвующих в химических реакциях в недрах Земли, приводит к образованию самых разнообразных соединений.

3. Что вам известно о роли таких химических элементов, как иод, кальций, железо, в жизнедеятельности организмов?

Биологическая роль кальция. Прежде всего, кальций является важнейшим структурным компонентом костей и зубов. Также кальций регулирует проницаемость клеточных мембран, а также инициирует ответы клеток на различные внешние стимулы. Присутствие кальция в клетки или во внеклеточной среде обуславливает дифференцировку клетки, а также сокращение мышц, секрецию и перистальтику. Кальций регулирует активность многих ферментов (включая ферменты систем свертывания крови). Кальций регулирует работу некоторых эндокринных желез, обладает десенсибилизирующим и противовоспалительным эффектом.

Основные функции кальция в организме:

– структурный компонент костей и зубов

– участвует в мышечных сокращениях

– регулирует проницаемость клеточных мембран

– участвует проводимости сигнала по нервным клеткам

– регулирует сердечную деятельность

– участвует в свертывании крови

Биологическая роль йода.

Основная биологическая роль йода заключается в синтезе гормонов щитовидной железы (тироксина и трийодтиронина), через которые он и реализует следующие эффекты:

– стимулирует рост и развитие организма

– регулирует рост и дифференцировку тканей

– повышает артериальное давление, а также частоту и силу сердечных сокращений

– регулирует (увеличивает) скорость протекания многих биохимических реакций

– регулирует обмен энергии, повышает температуру тела

– регулирует белковый, жировой, водно-электролитный обмен

– регулирует обмен витаминов

– повышает потребление тканями кислорода

Железо входит в группу эссенциальных (жизненно важных) микроэлементов.

Ранее из-за относительно высокого содержания его в организме (4,0-4,5 грамма в теле взрослого человека) его относили к макроэлементам. Однако 75-80% железа сосредоточено в гемоглобине крови и еще примерно 20% железа запасается в печени и селезенке. В остальных же тканях его концентрация сопоставима с микроэлементами.

Биологическая роль железа

– обеспечивает транспорт кислорода (входит в состав гемоглобина)

– обеспечивает транспорт электронов в окислительно-восстановительных реакциях организма (входит в состав цитохромов и железосеропротеидов)

– участвует в формировании активных центров окислительно-восстановительных ферментов

Вопросы для повторения и задания

1. В чём заключается сходство биологических систем и объектов неживой природы?

В живой природе обнаружено около 90 химических элементов, т. е. большая часть всех известных на сегодняшний день. Никаких специальных элементов, характерных только для живых организмов, не существует, и это является одним из доказательств общности живой и неживой природы. Но количественное содержание тех или иных элементов в живых организмах и в окружающей их неживой среде существенно отличается.

Например, кремния в почве около 33%, а в наземных растениях лишь 0,15%. Подобные различия указывают на способность живых организмов накапливать только те элементы, которые необходимы им для жизнедеятельности.

2. Перечислите биоэлементы и объясните, каково их значение в образовании живой материи.

Макроэлементы. I группа. Главными компонентами всех органических соединений, выполняющих биологические функции, являются кислород, углерод, водород и азот. Все углеводы и липиды содержат водород, углерод и кислород, а в состав белков и нуклеиновых кислот, кроме этих компонентов, входит азот. На долю этих четырёх элементов приходится 98% от массы живых клеток. II группа. К группе макроэлементов относятся также фосфор, сера, калий, магний, натрий, кальций, железо, хлор. Эти химические элементы являются обязательными компонентами всех живых организмов. Содержание каждого из них в клетке составляет от десятых до сотых долей процента от общей массы.

Натрий, калий и хлор обеспечивают возникновение и проведение электрических импульсов в нервной ткани. Поддержание нормального сердечного ритма зависит от концентрации в организме натрия, калия и кальция. Железо участвует в биосинтезе хлорофилла, входит в состав гемоглобина (белка-переносчика кислорода в крови) и миоглобина (белка, содержащего запас кислорода в мышцах). Магний в клетках растений входит в состав хлорофилла, а в животном организме участвует в формировании ферментов, необходимых для нормального функционирования мышечной, нервной и костной тканей. В состав белков часто входит сера, а все нуклеиновые кислоты содержат фосфор. Фосфор также является компонентом всех мембранных структур. Среди обеих групп макроэлементов кислород, углерод, водород, азот, фосфор и сера объединяются в группу биоэлементов, или органогенов, на основании того, что они составляют основу большинства органических молекул.

3. Что такое микроэлементы? Приведите примеры и охарактеризуйте биологическое значение этих элементов.

Существует большая группа химических элементов, которые содержатся в организмах в очень низких концентрациях. Это алюминий, медь, марганец, цинк, молибден, кобальт, никель, иод, селен, бром, фтор, бор и многие другие. На долю каждого из них приходится не более тысячных долей процента, а общий вклад этих элементов в массу клетки — около 0,02%. В растения и микроорганизмы микроэлементы поступают из почвы и воды, а в организм животных — с пищей, водой и воздухом. Роль и функции элементов этой группы в различных организмах весьма разнообразны. Как правило, микроэлементы входят в состав биологически активных соединений (ферментов, витаминов и гормонов), и их действие проявляется главным образом в том, как они влияют на обмен веществ. Кобальт входит в состав витамина В12 и принимает участие в синтезе гемоглобина, его недостаток приводит к анемии.

Молибден в составе ферментов участвует в фиксации азота у бактерий и обеспечивает работу устьичного аппарата у растений.

Медь является компонентом фермента, участвующего в синтезе меланина (пигмента кожи), влияет на рост и размножение растений, на процессы кроветворения у животных организмов.

Иод у всех позвоночных животных входит в состав гормона щитовидной железы — тироксина. Бор влияет на ростовые процессы у растений, его недостаток приводит к отмиранию верхушечных почек, цветков и завязей.

Цинк действует на рост животных и растений, а также входит в состав гормона поджелудочной железы — инсулина.

Так, например, марганец улучшает усвоение организмом меди, а фтор влияет на метаболизм стронция. Обнаружено, что некоторые организмы интенсивно накапливают определённые элементы.

Например, многие морские водоросли накапливают иод, хвощи — кремний, лютики — литий, а моллюски отличаются повышенным содержанием меди.

Микроэлементы широко используют в современном сельском хозяйстве в виде микроудобрений для повышения урожайности культур и в качестве добавок к кормам для увеличения продуктивности животных. Применяют микроэлементы и в медицине.

4. Как отразится на жизнедеятельности клетки и организма недостаток какого-либо микроэлемента? Приведите примеры таких явлений.

Нехватка селена приводит к возникновению у человека и животных раковых заболеваний. Каждый элемент играет свою определённую, очень важную роль в обеспечении жизнедеятельности организма. Как правило, биологический эффект того или иного микроэлемента зависит от присутствия в организме других элементов, т. е. каждый живой организм — это уникальная сбалансированная система, нормальная работа которой зависит, в том числе, и правильного соотношения её компонентов на любом уровне организации.

5. Расскажите об ультрамикроэлементах. Каково их содержание в организме? Что известно об их роли в живых организмах?

Существует группа химических элементов, которые содержатся в организмах в следовых, т. е. ничтожно малых, концентрациях. К ним относят золото, бериллий, серебро и другие элементы. Физиологическая роль этих компонентов в живых организмах пока окончательно не установлена.

6. Приведите примеры известных вам биохимических эндемий. Объясните причины их происхождения.

Резкий недостаток или, наоборот, избыток какого-либо химического элемента вызывает в пределах таких зон возникновение биогеохимических эндемий — заболеваний растений, животных и человека. Во многих районах нашей страны — на Урале и Алтае, в Приморье и в Ростовской области количество иода в почве и в воде значительно снижено. Если человек не получает с пищей нужного количества иода, у него снижается синтез тироксина. Щитовидная железа, пытаясь компенсировать нехватку гормона, разрастается, что приводит к образованию так называемого эндемического зоба. Особенно тяжёлые последствия от недостатка иода возникают у детей. Сниженное количество тироксина приводит к резкому отставанию в умственном и физическом развитии. Чтобы предотвратить заболевания щитовидной железы, врачи рекомендуют подсаливать пищу специальной солью, обогащённой иодидом калия, употреблять рыбные блюда и морскую капусту.

7. Составьте схему, иллюстрирующую элементный химический состав живых организмов.

Подумайте! Вспомните!

1. По какому принципу все химические элементы, входящие в состав живой природы, разделяют на макроэлементы, микроэлементы и ультрамикроэлементы? Предложите свою, альтернативную, классификацию химических элементов, основанную на другом принципе.

По процентному содержанию в живых клетках.

Классификация:

— биогенные элементы,

— абиогенные элементы.

Классификация:

— ионы металлов

— ионы неметаллов (бескислородные)

— ионы кислотных остатков кислородсодержащих кислот.

2. Иногда в учебниках и пособиях вместо словосочетания «элементный химический состав» можно встретить выражение «элементарный химический состав». Объясните, в чём некорректность такой формулировки.

Элементный – означает, состоящий из элементов, в данном случае химических, а элементарный – означает, слишком простой, поверхностный, ограниченный.

3. Выясните, существуют ли какие-либо особенности химического состава воды в местности, где вы живёте (например, избыток железа или нехватка фтора и т. д.). Используя дополнительную литературу и ресурсы Интернета, определите, какое влияние это может оказать на организм человека.

Некоторые водные ресурсы Челябинской области

Озеро Смолино. По химическому составу вода в озере относится к хлоридному классу, группе магния. Минерализация озерной воды высокая – 1400–1840 мг/л. Среднегодовые концентрации металлов составили: меди – 5,5 ПДК, цинка – 6,1 ПДК, марганца в северной части акватории – 6,4. Озеро Первое. По химическому составу вода в озере относится к хлоридному классу с переходом в гидрокарбонатный, группу кальция. Минерализация озерной воды повышенная – 602–983 мг/л. Среднегодовые концентрации трудноокисляемых органических соединений (ХПК) составило 1,8 ПДК, фторидов – 2,6 ПДК, меди – 5,3 ПДК, цинка – 5,8 ПДК, марганца в северной части акватории – 5,2 ПДК, в южной – 3,7 ПДК. Озеро Чебаркуль. По химическому составу вода в озере относилась к гидрокарбонатному классу, группе кальция. Среднегодовые концентрации составили: органических соединений по БПК5 – 1 ПДК, ХПК – 2,1 ПДК, азота аммония – 0,7 ПДК, азота нитритов и меди – 2 ПДК, цинка – 2,5 ПДК, марганца – 4,3 ПДК. Озеро Тургояк. Озеро Тургояк не испытывает техногенной нагрузки и используется в рекреационных целях. По химическому составу вода в озере относилась к гидрокарбонатному классу, группе кальция. Содержание в воде биогенных компонентов, нефтепродуктов, СПАВ, фторидов не превышало рыбохозяйственных нормативов, средняя концентрация органических соединений по ХПК превышала ПДК в 1,4 раза, марганца – 1,2 ПДК, меди – 2,8 ПДК, цинка – 3,4 ПДК.

Избыток марганца

Токсической дозой для человека считается 40 мг марганца в день, летальная — не установлена. Не было выявлено фактов отравления человека марганцем из пищевых продуктов, зафиксированы случаи острой интоксикации марганцевой пылью на производстве. Развиваются тяжелые нарушения психики, в том числе галлюцинации – «марганцевое безумие», гипермоторика, гиперраздражительность. Появлению симптомов при хроническом отравлении предшествует несколько лет.

Симптомы избытка марганца:

Упадок сил, повышенная утомляемость, вялость, снижение памяти, депрессивные состояния. Двигательные нарушения: расстройства мышечного тонуса, походки, атрофия мышц, скованность и замедленность движений, парестезии. Энцефалопатия, паркинсонизм. Интерстициальные заболевания лёгких, манганокониоз.

Избыток цинка в организме

Доза цинка свыше 200 мг в сутки является рвотным средством.Продолжительный прием добавок цинка, превышающих 150 мг в день, становится причиной ухудшения работы иммунитета и появления эрозий в желудке. Среди признаков острого отравления цинком отмечались: боли в области эпигастрии, рвота, тошнота, диарея. Хроническая интоксикация приводила к вторичному дефициту меди.

Причины избытка цинка в организме:

Чрезмерное количество поступления цинка в организм, к примеру, в процессе контакта с соединениями микроэлемента в условиях производства.Неконтролируемый прием препаратов цинка, включая цинковые мази.Нарушения цинкового обмена.

Симптомы избытка цинка:

Снижение работы иммунной системы, развитие аутоиммунных реакций. Патологические состояния ногтей, кожи, волос. Боли в области желудка, тошнота. Понижение уровня кадмия, меди, железа в организме. Нарушения работы печени, поджелудочной железы, простаты.

Избыток меди в организме

Токсичной дозой является количество 200 – 250 мг в сутки. Случаи острого отравления медью были зафиксированы: в попытках самоубийства; при наружном использовании; при случайном употреблении детьми; при приеме загрязненной питьевой воды или воды и напитков из медных контейнеров; у рабочих, трудившихся на виноградниках и применяющих соединения из меди в качестве пестицидов.

Причины избытка меди:

Избыточное поступление микроэлемента в организм: в условиях производства через вдыхание пыли и паров соединений меди, в быту — в результате отравлений растворами соединений меди, применения посуды из меди. Нарушения обмена микроэлемента.

Симптомы избытка меди:

Нарушения работы ЦНС: депрессивные состояния, бессонница, снижение памяти. «Медная лихорадка» при вдыхании паров: значительное повышение температуры, обильное потоотделение, озноб, спазмы в икроножных мышцах. Пыль и окись меди провоцирует слезотечение, раздражение слизистых оболочек и конъюнктивы, чихание, жжение в зеве, головную боль, слабость, боли в мышцах, желудочно-кишечные расстройства. Нарушения работы почек и печени. Развитие цирроза печени и вторичное поражение головного мозга, обусловленное наследственным нарушением белкового обмена и обмена меди — болезнь Вильсона-Коновалова. Эта наследственная патология, связанная с процессом накопления меди в печени. Аллергические дерматозы: нейродермит, экземы, крапивница. Повышение вероятности развития атеросклероза. Эритроцитолиз (разрушение эритроцитов с выделением гемоглобина), гемоглобин в моче, малокровие. Отложение избытка микроэлемента в ткани головного мозга, в печени, миокарде, коже, поджелудочной железе.

Обмен веществ и превращение энергии. Энергетический обмен



Вспомните!

Что такое метаболизм?

(от греч. μεταβολή — «превращение, изменение»), или обмен веществ — набор химических реакций, которые возникают в живом организме для поддержания жизни. Эти процессы позволяют организмам расти и размножаться, сохранять свои структуры и отвечать на воздействия окружающей среды.

Из каких двух взаимосвязанных процессов он состоит?

Энергетический обмен и пластический обмен

Где в организме человека происходит расщепление большей части органических веществ, поступающих с пищей?

Первоначально, в пищеварительном тракте, затем в клетках и их органоидах (митохондрии, цитоплазма).

Вопросы для повторения и задания

1. Что такое диссимиляция? Перечислите её этапы.

Совокупность реакций расщепления высокомолекулярных соединений, которые сопровождаются выделением и запасанием энергии, называют энергетическим обменом или диссимиляцией. В основном энергия запасается в виде универсального энергоёмкого соединения — АТФ.

1) Подготовительный

2) Бескислородное окисление

3) Кислородное окисление

2. В чём заключается роль АТФ в обмене веществ в клетке?

Аденозинтрифосфорная кислота (АТФ) — нуклеотид, состоящий из азотистого основания (аденина), сахара рибозы и трёх остатков фосфорной кислоты (рис. 53). АТФ является главной энергетической молекулой клетки, своего рода аккумулятором энергии. Все процессы в живых организмах, требующие затрат энергии, сопровождаются превращением молекулы АТФ в АДФ (аденозиндифосфорную кислоту). При отщеплении остатка фосфорной кислоты высвобождается большое количество энергии — 40 кДж/моль. Таких высокоэнергетических (так называемых макроэргических) связей в молекуле АТФ две. Восстановление структуры АТФ из АДФ и фосфорной кислоты происходит в митохондриях и сопровождается поглощением энергии.

3. Какие структуры клетки осуществляют синтез АТФ?

Митохондрии

4. Расскажите об энергетическом обмене в клетке на примере расщепления глюкозы.

1) Подготовительный этап расщепления углеводов идет в пищеварительном тракте до простого углевода – глюкозы, при этом энергии выделяется мало и она рассеивается в организме в виде тепла.

2) Бескислородный этап расщепления глюкозы – гликолиз (анаэробное окисление). Этап протекает в цитоплазме в отсутствие свободного кислорода. Глюкоза С6Н12О6 пировиноградная кислота (ПВК) С3Н4О3. Глюкоза расщепляется до ПВК с выделением 4АТФ. Затем 2АТФ используются в этом этапе для дальнейшего превращения ПВК в молочную кислоту. И в итоге во втором этапе выделяется 2АТФ.

3) Кислородное окисление – аэробное окисление (или клеточное дыхание). Этап, в результате которого молочная кислота расщепляется под действием молекулярного кислорода до конечных продуктов распада – углекислого газа и воды. Протекает в митохондриях на дыхательной цепи ферментов, которые располагаются на кристах митохондрий. Вт результате этого этапа выделяется 36 АТФ. Таким образом, за два этапа – при полном окислении 1 моль глюкозы (1 молекулы) выделяется 38 АТФ (2АТФ + 36АТФ). Итоговый синтез и запас АТФ осуществляется в митохондриях – эти органоиды называются энергетическими центрами клетки.

5. Изобразите схематично процесс диссимиляции, сведя на одной схеме все возможные его варианты, упомянутые в тексте параграфа (в том числе брожение).

6. Синонимами слов «диссимиляция» и «ассимиляция» являются термины «катаболизм» и «анаболизм». Объясните происхождение этих терминов.

Катаболизм (от греч. Καταβολή, «сбрасывание, разрушение») или энергетический обмен, или диссимиляция — процесс метаболического распада, разложения на более простые вещества (дифференциация) или окисления какого-либо вещества, обычно протекающий с освобождением энергии в виде тепла и в виде АТФ. Анаболизм (от греч. ἀναβολή, «подъём») – так называются все процессы создания новых веществ, клеток и тканей организма. Примеры анаболизма: синтез в организме белков и гормонов, создание новых клеток, накопление жиров, создание новых мышечных волокон – это все анаболизм.

Подумайте! Вспомните!

1. Объясните, почему потребление избыточного количества пищи приводит к ожирению.

Так как в клетках все органические соединения соединены друг с другом основными метаболитами (ПВК, ацетил-КоА) через которые одни органические вещества могут превращаться при избытке в другие. Наример, избыток углеводов превращаются в жиры.

2. Почему энергетический обмен не может существовать без пластического обмена?

Энергия, которая высвобождается при энергетическом обмене идет на процессы в пластическом обмене. И вещества пластического обмена расщепляются в энергетическом обмене.

3. Как вы считаете, почему после тяжёлой физической работы, для того чтобы быстрее снять боли в мышцах, рекомендуют принять тёплую ванну?

Боль в мышцах вызывает накопление молочной кислоты при гликолизе, ее концентрация действует на рецепторы, раздражая их, вызывая жжение. Чтобы снять это действие необходим прилив крови с кислородом, кислород расщепить молочную кислоту до конечных продуктов распада. Одним из способов служит принятие теплой ванны. При этом тело разогревается, сосуды расширяются и кровь с кислородом приливает и питает все мышцы, тем самым молочная кислота окисляется до углекислого газа и воды, снимается болевые ощущения в мышцах.